Hybrid modelling of intelligence and linguistic factors as predictors of translation quality
Keywords:
Narrative intelligence, Verbal intelligence, Translation, SEM, Language proficiencyAbstract
That translators should possess a comprehensive knowledge of the source and target language has long been considered a fundamental prerequisite within translation studies. However, this field seems to overlook the strategic applications of other related areas. Accordingly, the current study particularly sought to adopt an interdisciplinary approach and investigate the quality of forward and backward translation performance based on a pair of complementary viewpoints. From the intelligence-based view, the likely influence of Narrative Intelligence (NI) alongside Verbal Intelligence (VI) was examined. From the linguistic-based view, the L1 and L2 proficiency levels of translators were taken into consideration in order to ultimately determine whether NI, VI or L1/L2 proficiency can predict improved quality of translated texts in both directions. The research involved participation by 231 university students who were selected to complete a set of scales and tests. Structural Equation Modelling (SEM) was utilized to evaluate the correlation between the targeted variables. Upon analysing the data it was found that NI, VI, and L1/L2 proficiency correlate significantly - although differently – with the quality of the translated texts. The results are discussed, and some of their implications are identified and considered in the context of translation studies.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).